Feebly compact semitopological symmetric inverse semigroups of a bounded finite rank

Oleg Gutik

National University of Lviv

Dynamical Methods in Algebra, Geometry and Topology
Udine, Italy, July 4-6, 2018
Let λ be an arbitrary non-zero cardinal. A map α from a subset D of λ into λ is called a *partial transformation* of λ. In this case the set D is called the *domain* of α and it is denoted by $\text{dom } \alpha$. The image of an element $x \in \text{dom } \alpha$ under α we shall denote by $x \alpha$. Also, the set $\{x \in \lambda : y \alpha = x \text{ for some } y \in Y\}$ is called the *range* of α and is denoted by $\text{ran } \alpha$. The cardinality of $\text{ran } \alpha$ is called the *rank* of α and denoted by $\text{rank } \alpha$. For convenience we denote by \emptyset the empty transformation, that is a partial mapping with $\text{dom } \emptyset = \text{ran } \emptyset = \emptyset$.
Let \mathcal{I}_λ be the set of all partial one-to-one transformations of λ together with the following semigroup operation:

$$x(\alpha \beta) = (x\alpha)\beta$$ if $x \in \text{dom}(\alpha \beta) = \{y \in \text{dom} \alpha : y\alpha \in \text{dom} \beta\}$, for $\alpha, \beta \in \mathcal{I}_\lambda$.

The semigroup \mathcal{I}_λ is called the symmetric inverse semigroup over the cardinal λ.
Definition (Wagner–Clifford, 1952-1954)

A semigroup S is called *inverse* if for every $x \in S$ there exists a unique $y \in S$ such that $xyx = x$ and $yxy = y$. Such element y is said to be inverse of x and denote by x^{-1}. If S is an inverse semigroup, then the map $S \to S$: $x \mapsto x^{-1}$ is called *inversion*.

Definition

Put $\mathcal{I}_\lambda^n = \{\alpha \in \mathcal{I}_\lambda : \text{rank } \alpha \leq n\}$, for $n = 1, 2, 3, \ldots$. Obviously, \mathcal{I}_λ^n is an inverse subsemigroup of \mathcal{I}_λ, and moreover \mathcal{I}_λ^n is an ideal of \mathcal{I}_λ, for each $n = 1, 2, 3, \ldots$. The semigroup \mathcal{I}_λ^n is called the *symmetric inverse semigroup of finite transformations of the rank $\leq n$*.
Definitions

Definition (Wagner–Clifford, 1952-1954)

A semigroup S is called inverse if for every $x \in S$ there exists a unique $y \in S$ such that $xyx = x$ and $yxy = y$. Such element y is said to be inverse of x and denote by x^{-1}. If S is an inverse semigroup, then the map $S \to S: x \mapsto x^{-1}$ is called inversion.

Definition

Put $I^*_\lambda = \{ \alpha \in I_\lambda : \text{rank } \alpha \leq n \}$, for $n = 1, 2, 3, \ldots$. Obviously, I^*_λ is an inverse subsemigroup of I_λ, and moreover I^*_λ is an ideal of I_λ, for each $n = 1, 2, 3, \ldots$. The semigroup I^*_λ is called the symmetric inverse semigroup of finite transformations of the rank $\leq n$.
Definitions

Definition (Wagner–Clifford, 1952-1954)

A semigroup S is called \textit{inverse} if for every $x \in S$ there exists a unique $y \in S$ such that $xyx = x$ and $yxy = y$. Such element y is said to be inverse of x and denote by x^{-1}. If S is an inverse semigroup, then the map $S \to S$: $x \mapsto x^{-1}$ is called \textit{inversion}.

Definition

Put $I^n_\lambda = \{ \alpha \in I_\lambda : \text{rank } \alpha \leq n \}$, for $n = 1, 2, 3, \ldots$. Obviously, I^n_λ is an inverse subsemigroup of I_λ, and moreover I^n_λ is an ideal of I_λ, for each $n = 1, 2, 3, \ldots$. The semigroup I^n_λ is called the \textit{symmetric inverse semigroup of finite transformations of the rank }$\leq n$.

Oleg Gutik

Feebly compact semitopological symmetric inverse semigroups ...
Definitions

Definition (Wagner–Clifford, 1952-1954)

A semigroup S is called *inverse* if for every $x \in S$ there exists a unique $y \in S$ such that $xyx = x$ and $yxy = y$. Such element y is said to be inverse of x and denote by x^{-1}. If S is an inverse semigroup, then the map $S \to S: x \mapsto x^{-1}$ is called *inversion*.

Definition

Put $\mathcal{I}_\lambda^n = \{ \alpha \in \mathcal{I}_\lambda : \text{rank } \alpha \leq n \}$, for $n = 1, 2, 3, \ldots$. Obviously, \mathcal{I}_λ^n is an inverse subsemigroup of \mathcal{I}_λ, and moreover \mathcal{I}_λ^n is an ideal of \mathcal{I}_λ, for each $n = 1, 2, 3, \ldots$. The semigroup \mathcal{I}_λ^n is called the symmetric inverse semigroup of finite transformations of the rank $\leq n$.
Definition (Wagner–Clifford, 1952-1954)

A semigroup S is called *inverse* if for every $x \in S$ there exists a unique $y \in S$ such that $xyx = x$ and $yxy = y$. Such element y is said to be inverse of x and denote by x^{-1}. If S is an inverse semigroup, then the map $S \to S$: $x \mapsto x^{-1}$ is called *inversion*.

Definition

Put $\mathcal{I}_\lambda^n = \{ \alpha \in \mathcal{I}_\lambda : \text{rank } \alpha \leq n \}$, for $n = 1, 2, 3, \ldots$. Obviously, \mathcal{I}_λ^n is an inverse subsemigroup of \mathcal{I}_λ, and moreover \mathcal{I}_λ^n is an ideal of \mathcal{I}_λ, for each $n = 1, 2, 3, \ldots$. The semigroup \mathcal{I}_λ^n is called the *symmetric inverse semigroup of finite transformations of the rank $\leq n$*.
Definitions

A *semitopological* (*topological*) *semigroup* is a Hausdorff topological space with separately continuous (continuous) semigroup operations. Inverse topological semigroup with continuous inversion is called a *topological inverse semigroup*.

A topology τ on a semigroup S is defined to be

- *shift-continuous* if for every $a \in S$ the left and right shifts $l_a : S \to S$, $l_a : x \mapsto ax$, and $r_a : S \to S$, $r_a : x \mapsto xa$, are continuous.
- *semigroup* if the semigroup operation in (S, τ) is continuous;
- *inverse* if (S, τ) is an inverse semigroup with continuous inversion.
A **semitopological (topological) semigroup** is a Hausdorff topological space with separately continuous (continuous) semigroup operations. Inverse topological semigroup with continuous inversion is called a **topological inverse semigroup**.

A topology τ on a semigroup S is defined to be

- **shift-continuous** if for every $a \in S$ the left and right shifts $l_a : S \to S$, $r_a : S \to S$, $l_a : x \mapsto ax$, and $r_a : x \mapsto xa$, are continuous.
- **semigroup** if the semigroup operation in (S, τ) is continuous;
- **inverse** if (S, τ) is an inverse semigroup with continuous inversion.
A *semitopological (topological) semigroup* is a Hausdorff topological space with separately continuous (continuous) semigroup operations. Inverse topological semigroup with continuous inversion is called a *topological inverse semigroup*.

A topology τ on a semigroup S is defined to be

- *shift-continuous* if for every $a \in S$ the left and right shifts $l_a : S \to S$, $l_a : x \mapsto ax$, and $r_a : S \to S$, $r_a : x \mapsto xa$, are continuous.
- *semigroup* if the semigroup operation in (S, τ) is continuous;
- *inverse* if (S, τ) is an inverse semigroup with continuous inversion.
Definitions

A *semitopological (topological) semigroup* is a Hausdorff topological space with separately continuous (continuous) semigroup operations. Inverse topological semigroup with continuous inversion is called a *topological inverse semigroup*.

A topology τ on a semigroup S is defined to be

- *shift-continuous* if for every $a \in S$ the left and right shifts $l_a : S \rightarrow S$, $l_a : x \mapsto ax$, and $r_a : S \rightarrow S$, $r_a : x \mapsto xa$, are continuous.
- *semigroup* if the semigroup operation in (S, τ) is continuous;
- *inverse* if (S, τ) is an inverse semigroup with continuous inversion.
Definitions

A *semitopological* (topological) *semigroup* is a Hausdorff topological space with separately continuous (continuous) semigroup operations. Inverse topological semigroup with continuous inversion is called a *topological inverse semigroup*.

A topology τ on a semigroup S is defined to be

- *shift-continuous* if for every $a \in S$ the left and right shifts $l_a : S \to S$, $l_a : x \mapsto ax$, and $r_a : S \to S$, $r_a : x \mapsto xa$, are continuous.
- *semigroup* if the semigroup operation in (S, τ) is continuous;
- *inverse* if (S, τ) is an inverse semigroup with continuous inversion.
A \textit{semitopological (topological) semigroup} is a Hausdorff topological space with separately continuous (continuous) semigroup operations. Inverse topological semigroup with continuous inversion is called a \textit{topological inverse semigroup}.

A topology τ on a semigroup S is defined to be
\begin{itemize}
 \item \textit{shift-continuous} if for every $a \in S$ the left and right shifts $l_a : S \to S$, $l_a : x \mapsto ax$, and $r_a : S \to S$, $r_a : x \mapsto xa$, are continuous.
 \item \textit{semigroup} if the semigroup operation in (S, τ) is continuous;
 \item \textit{inverse} if (S, τ) is an inverse semigroup with continuous inversion.
\end{itemize}
Generalizations of compactness

- compact
- \(\omega \)-bounded
- \(\omega \)-pracompact
- sequentially compact
- totally countably compact
- countably compact
- total. countably pracompact
- sequentially pracompact
- countably pracompact
- pracompact
- infra H-closed
- \(d \)-feebly compact
- \(\omega \)-bounded
- select. sequent. feebly compact
- selectively feebly compact
- feebly compact
- \(D \)-compact
- \(R \)-compact
- infra H-closed
- pseudocompact

A topological space \(X \) is said to be **compact** if each open cover of \(X \) has a finite subcover.
Generalizations of compactness

<table>
<thead>
<tr>
<th>compact</th>
<th>(\omega)-bounded</th>
<th>(\omega)-pracompact</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequentially compact</td>
<td>totally countably compact</td>
<td>total countably pracompact</td>
</tr>
<tr>
<td>countably compact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequentially pracompact</td>
<td>countably pracompact</td>
<td>H-closed</td>
</tr>
<tr>
<td>select. sequent. feebly compact</td>
<td>selectively feebly compact</td>
<td>feebly (\omega)-bounded</td>
</tr>
<tr>
<td>sequentially feebly compact</td>
<td>feebly compact</td>
<td>(d)-feebly compact</td>
</tr>
<tr>
<td>(\mathcal{D}_\omega)-compact</td>
<td>(\mathcal{R})-compact</td>
<td>infra H-closed</td>
</tr>
</tbody>
</table>

A topological space \(X\) is said to be \(\omega\)-bounded if each countable subset of \(X\) has the compact closure.
A topological space X is said to be ω-pracompact if X contains a dense subset D such that each countable subset of D has the compact closure in X [G.-Ravsky, 2018].
Generalizations of compactness

- **compact**
- **ω-bounded**
- **ω-pracompact**
- **sequentially compact**
- **totally countably compact**
- **countably compact**
- **total. countably pracompact**
- **sequentially pracompact**
- **countably pracompact**
- **H-closed**
- **select. sequent. feebly compact**
- **selectively feebly compact**
- **feebly ω-bounded**
- **sequentially feebly compact**
- **feebly compact**
- **d-feebly compact**
- **Ωω-compact**
- **R-compact**
- **infra H-closed**
- **pseudocompact**

A topological space X is said to be **sequentially compact** if each sequence $\{x_i\}_{i \in \mathbb{N}}$ of X has a convergent subsequence in X.
Generalizations of compactness

- compact
- ω-bounded
- ω-pracompact
- sequentially compact
- totally countably compact
- countably compact
- total. countably pracompact
- sequentially pracompact
- countably pracompact
- H-closed
- select. sequent. feebly compact
- selectively feebly compact
- feebly ω-bounded
- sequentially feebly compact
- feebly compact
- d-feebly compact
- \mathcal{D}_ω-compact
- \mathbb{R}-compact
- infra H-closed
- pseudocompact

A topological space X is said to be **totally countably compact** if each sequence of X contains a subsequence with the compact closure.
A topological space X is said to be *countably compact* if each open countable cover of X has a finite subcover.
A topological space X is said to be *totally countably pracompact* if there exists a dense subset D of X such that each sequence of points of D has a subsequence with the compact closure in X [G.-Ravsky, 2018].
A topological space X is said to be **sequentially pracompact** if there exists a dense subset D of X such that each sequence of points of D has a convergent subsequence [G.-Ravsky, 2018].
Generalizations of compactness

<table>
<thead>
<tr>
<th>compact</th>
<th>ω-bounded</th>
<th>ω-pracompact</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequentially compact</td>
<td>totally countably compact</td>
<td></td>
</tr>
<tr>
<td>countably compact</td>
<td>total. countably pracompact</td>
<td></td>
</tr>
<tr>
<td>sequentially pracompact</td>
<td>countably pracompact</td>
<td></td>
</tr>
<tr>
<td>select. sequent. feebly compact</td>
<td>selectively feebly compact</td>
<td></td>
</tr>
<tr>
<td>sequentially feebly compact</td>
<td>feebly compact</td>
<td></td>
</tr>
<tr>
<td>Q_ω-compact</td>
<td>\mathbb{R}-compact</td>
<td>infra H-closed</td>
</tr>
<tr>
<td>pseudocompact</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A topological space X is said to be **countably pracompact** if there exists a dense subset A in X such that X is countably compact at A [Arkhanegelskii, 1988].
<table>
<thead>
<tr>
<th>Generalizations of compactness</th>
</tr>
</thead>
<tbody>
<tr>
<td>compact</td>
</tr>
<tr>
<td>sequentially compact</td>
</tr>
<tr>
<td>countably compact</td>
</tr>
<tr>
<td>sequentially pracompact</td>
</tr>
<tr>
<td>select. sequent. feebly compact</td>
</tr>
<tr>
<td>sequentially feebly compact</td>
</tr>
<tr>
<td>\mathcal{D}_ω-compact</td>
</tr>
</tbody>
</table>

A topological space X is said to be H-closed if X is a closed subspace of every Hausdorff topological space in which it contained.
A topological space X is said to be \textit{selectively sequentially feebly compact} if for every family $\{U_n : n \in \mathbb{N}\}$ of non-empty open subsets of X, one can choose a point $x_n \in U_n$ for every $n \in \mathbb{N}$ in such a way that the sequence $\{x_n : n \in \mathbb{N}\}$ has a convergent subsequence [Dorantes, Aldama, Shakhmatov, 2017].
Generalizations of compactness

<table>
<thead>
<tr>
<th>compact</th>
<th>ω-bounded</th>
<th>ω-pracompact</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequentially compact</td>
<td>totally countably compact</td>
<td>total. countably pracompact</td>
</tr>
<tr>
<td>countably compact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequentially pracompact</td>
<td>countably pracompact</td>
<td>H-closed</td>
</tr>
<tr>
<td>select. sequent. feebly compact</td>
<td>selectively feebly compact</td>
<td>feebly ω-bounded</td>
</tr>
<tr>
<td>sequentially feebly compact</td>
<td>feebly compact</td>
<td>d-feebly compact</td>
</tr>
</tbody>
</table>
| \mathcal{O}_ω-compact | \mathcal{R}-compact | infra H-closed | pseudocompact

A topological space X is said to be **selectively feebly compact** if for every family $\{U_n : n \in \mathbb{N}\}$ of non-empty open subsets of X, there exists an infinite set $J \subseteq \mathbb{N}$ and a point $x \in X$ such that the set $\{n \in J : W \cap U_n = \emptyset\}$ is finite for every open neighborhood W of x [Dow, Porter, Stephenson, Woods, 2004].
A topological space X is said to be \textit{feebly ω-bounded} if for each sequence $\{U_n\}_{n \in \mathbb{N}}$ of non-empty open subsets of X there is a compact subset K of X such that $K \cap U_n \neq \emptyset$ for each n [G.-Ravsky, 2018].
A topological space X is said to be \textit{sequentially feebly compact} if for every family $\{U_n : n \in \mathbb{N}\}$ of non-empty open subsets of X, there exists an infinite set $J \subseteq \mathbb{N}$ and a point $x \in X$ such that the set $\{n \in J : W \cap U_n = \emptyset\}$ is finite for every open neighborhood W of x [Dow, Porter, Stephenson, Woods, 2004].
Generalizations of compactness

A topological space X is said to be **feebly compact** if each locally finite open cover of X is finite [Bagley, Connell, McKnight, Jr., 1958].
A topological space X is said to be d-feebly compact (or DFCC) if every discrete family of open subsets in X is finite.
Generalizations of compactness

<table>
<thead>
<tr>
<th>compact</th>
<th>ω-bounded</th>
<th>ω-pracompact</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequentially compact</td>
<td>totally countably compact</td>
<td></td>
</tr>
<tr>
<td>countably compact</td>
<td></td>
<td>total. countably prankompact</td>
</tr>
<tr>
<td>sequentially pracompact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>countably pracompact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>select. sequent. feebly compact</td>
<td></td>
<td>feebly ω-bounded</td>
</tr>
<tr>
<td>sequentially feebly compact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>feebly compact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{D}_ω-compact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{R}-compact</td>
<td>infra H-closed</td>
<td>pseudocompact</td>
</tr>
</tbody>
</table>

A topological space X is said to be *pseudocompact* if X is Tychonoff and each continuous real-valued function on X is bounded.
A topological space X is said to be **infra H-closed** provided that any continuous image of X into any first countable Hausdorff space is closed [Hajek, Todd, 1975].
Generalizations of compactness

<table>
<thead>
<tr>
<th>compact</th>
<th>ω-bounded</th>
<th>ω-pracompact</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequentially compact</td>
<td>totally countably compact</td>
<td>total. countably pracompact</td>
</tr>
<tr>
<td>countably compact</td>
<td>countably pracompact</td>
<td>H-closed</td>
</tr>
<tr>
<td>sequentially pracompact</td>
<td>countably pracompact</td>
<td></td>
</tr>
<tr>
<td>select. sequent. feebly compact</td>
<td>selectively feebly compact</td>
<td>feebly ω-bounded</td>
</tr>
<tr>
<td>sequentially feebly compact</td>
<td>feebly compact</td>
<td>d-feebly compact</td>
</tr>
<tr>
<td>D_ω-compact</td>
<td>\mathbb{R}-compact</td>
<td>infra H-closed</td>
</tr>
</tbody>
</table>

A topological space X is said to be Y-compact for some topological space Y, if $f(X)$ is compact, for any continuous map $f: X \to Y$.
Generalizations of compactness

- Compact
- ω-bounded
- ω-pracompact
- Sequentially compact
- Totally countably compact
- Countably compact
- Total. countably pracompact
- Sequentially pracompact
- Countably pracompact
- Total. countably pracompact
- H-closed
- Select. sequent. feebly compact
- Selectively feebly compact
- Feebly ω-bounded
- Sequentially feebly compact
- Feebly compact
- d-feebly compact
- \mathcal{D}_ω-compact
- \mathbb{R}-compact
- Infra H-closed
- Pseudocompact
Generalizations of compactness

- Compact
- ω-bounded
- ω-pracompact
- Sequentially compact
- Totally countably compact
- Countably compact
- Total countably pracompact
- Sequentially pracompact
- Countably pracompact
- H-closed
- Selectively feebly compact
- Feebly ω-bounded
- Sequentially feebly compact
- Feebly compact
- D_ω-compact
- R-compact
- Infra H-closed
- Pseudocompact

Metrizable spaces
Old Results

Theorem (G-Pavlyk-Reiter, 2009)

For infinite cardinal λ the semigroup \mathcal{I}_λ^1 does not embed into a Hausdorff countably compact topological semigroup.

Theorem (G-Pavlyk, 2005)

For any infinite cardinal λ there exists a unique shift-continuous Hausdorff compact topology on \mathcal{I}_λ^1.

This topology is the Alexandroff one-point compactification of the discrete space of cardinality λ and it will denote by τ_{Ac}.

Theorem (G-Pavlyk, 2005)

Let λ by any infinite cardinal. Then every shift-continuous T_1-topology on \mathcal{I}_λ^1 is collectionwise normal and the following statement are equivalent:

(i) $(\mathcal{I}_\lambda^1, \tau)$ is a compact Hausdorff semitopological semigroup;

(ii) $\tau = \tau_{Ac}$;

(iii) $(\mathcal{I}_\lambda^1, \tau)$ is a feebly compact Hausdorff semitopological semigroup.
Old Results

Theorem (G-Pavlyk-Reiter, 2009)
For infinite cardinal \(\lambda \) the semigroup \(I^1_\lambda \) does not embed into a Hausdorff countably compact topological semigroup.

Theorem (G-Pavlyk, 2005)
For any infinite cardinal \(\lambda \) there exists a unique shift-continuous Hausdorff compact topology on \(I^1_\lambda \).

This topology is the Alexandroff one-point compactification of the discrete space of cardinality \(\lambda \) and it will denote by \(\tau_{Ac} \).

Theorem (G-Pavlyk, 2005)
Let \(\lambda \) be any infinite cardinal. Then every shift-continuous \(T_1 \)-topology on \(I^1_\lambda \) is collectionwise normal and the following statement are equivalent:

(i) \((I^1_\lambda, \tau) \) is a compact Hausdorff semitopological semigroup;
(ii) \(\tau = \tau_{Ac} \);
(iii) \((I^1_\lambda, \tau) \) is a feebly compact Hausdorff semitopological semigroup.
Old Results

Theorem (G-Pavlyk-Reiter, 2009)

For infinite cardinal λ the semigroup I^1_λ does not embed into a Hausdorff countably compact topological semigroup.

Theorem (G-Pavlyk, 2005)

For any infinite cardinal λ there exists a unique shift-continuous Hausdorff compact topology on I^1_λ.

This topology is the Alexandroff one-point compactification of the discrete space of cardinality λ and it will denote by τ_{Ac}.

Theorem (G-Pavlyk, 2005)

Let λ by any infinite cardinal. Then every shift-continuous T_1-topology on I^1_λ is collectionwise normal and the following statement are equivalent:

1. (I^1_λ, τ) is a compact Hausdorff semitopological semigroup;
2. $\tau = \tau_{Ac}$;
3. (I^1_λ, τ) is a feebly compact Hausdorff semitopological semigroup.
Old Results

Theorem (G-Pavlyk-Reiter, 2009)
For infinite cardinal λ the semigroup I^1_λ does not embed into a Hausdorff countably compact topological semigroup.

Theorem (G-Pavlyk, 2005)
For any infinite cardinal λ there exists a unique shift-continuous Hausdorff compact topology on I^1_λ.

This topology is the Alexandroff one-point compactification of the discrete space of cardinality λ and it will denote by τ_{Ac}.

Theorem (G-Pavlyk, 2005)
Let λ be any infinite cardinal. Then every shift-continuous T_1-topology on I^1_λ is collectionwise normal and the following statement are equivalent:

(i) (I^1_λ, τ) is a compact Hausdorff semitopological semigroup;
(ii) $\tau = \tau_{Ac}$;
(iii) (I^1_λ, τ) is a feebly compact Hausdorff semitopological semigroup.
\((\mathcal{I}_{\lambda}^1, \tau)\) is a Hausdorff semitopological semigroup.
Theorem (G-Lawson-Repovš, 2009)
Let λ be any infinite cardinal and n be any positive integer. If a Hausdorff semitopological semigroup S with continuous inversion contains I_λ^n, then I_λ^n is a closed subsemigroup of S.

Theorem (G-Reiter, 2010)
Let λ be any infinite cardinal, n be any positive integer and $h : I_\lambda^n \to S$ be homomorphism into a Hausdorff semitopological semigroup S with continuous inversion. Then $(I_\lambda^n)h$ is a closed subsemigroup of S.

Definition
Let \mathcal{I} be a class of Hausdorff semitopological semigroups. A semigroup $S \in \mathcal{I}$ is called H-closed in \mathcal{I}, if S is a closed subsemigroup of any topological semigroup $T \in \mathcal{I}$ which contains S both as a subsemigroup and as a topological space.

Theorem (G-2014)
Let λ by any infinite cardinal. Then a semitopological semigroup (I_λ^1, τ) is H-closed in the class of Hausdorff semitopological semigroups if and only if (I_λ^1, τ) is compact.
Old Results

Theorem (G-Lawson-Repovš, 2009)

Let λ be any infinite cardinal and n be any positive integer. If a Hausdorff semitopological semigroup S with continuous inversion contains \mathcal{I}_λ^n, then \mathcal{I}_λ^n is a closed subsemigroup of S.

Theorem (G-Reiter, 2010)

Let λ be any infinite cardinal, n be any positive integer and $h: \mathcal{I}_\lambda^n \to S$ be homomorphism into a Hausdorff semitopological semigroup S with continuous inversion. Then $(\mathcal{I}_\lambda^n)h$ is a closed subsemigroup of S.

Definition

Let \mathcal{J} be a class of Hausdorff semitopological semigroups. A semigroup $S \in \mathcal{J}$ is called \textit{H-closed} in \mathcal{J}, if S is a closed subsemigroup of any topological semigroup $T \in \mathcal{J}$ which contains S both as a subsemigroup and as a topological space.

Theorem (G-2014)

Let λ be any infinite cardinal. Then a semitopological semigroup $(\mathcal{I}_\lambda^1, \tau)$ is H-closed in the class of Hausdorff semitopological semigroups if and only if $(\mathcal{I}_\lambda^1, \tau)$ is compact.
Old Results

Theorem (G-Lawson-Repovš, 2009)

Let λ be any infinite cardinal and n be any positive integer. If a Hausdorff semitopological semigroup S with continuous inversion contains \mathcal{I}_λ^n, then \mathcal{I}_λ^n is a closed subsemigroup of S.

Theorem (G-Reiter, 2010)

Let λ be any infinite cardinal, n be any positive integer and $h: \mathcal{I}_\lambda^n \to S$ be homomorphism into a Hausdorff semitopological semigroup S with continuous inversion. Then $(\mathcal{I}_\lambda^n)h$ is a closed subsemigroup of S.

Definition

Let \mathcal{I} be a class of Hausdorff semitopological semigroups. A semigroup $S \in \mathcal{I}$ is called **H-closed** in \mathcal{I}, if S is a closed subsemigroup of any topological semigroup $T \in \mathcal{I}$ which contains S both as a subsemigroup and as a topological space.

Theorem (G-2014)

Let λ by any infinite cardinal. Then a semitopological semigroup $(\mathcal{I}_\lambda^1, \tau)$ is H-closed in the class of Hausdorff semitopological semigroups if and only if $(\mathcal{I}_\lambda^1, \tau)$ is compact.
Old Results

Theorem (G-Lawson-Repovš, 2009)

Let λ be any infinite cardinal and n be any positive integer. If a Hausdorff semitopological semigroup S with continuous inversion contains I^n_λ, then I^n_λ is a closed subsemigroup of S.

Theorem (G-Reiter, 2010)

Let λ be any infinite cardinal, n be any positive integer and $h : I^n_\lambda \to S$ be homomorphism into a Hausdorff semitopological semigroup S with continuous inversion. Then $(I^n_\lambda)h$ is a closed subsemigroup of S.

Definition

Let \mathcal{I} be a class of Hausdorff semitopological semigroups. A semigroup $S \in \mathcal{I}$ is called **H-closed** in \mathcal{I}, if S is a closed subsemigroup of any topological semigroup $T \in \mathcal{I}$ which contains S both as a subsemigroup and as a topological space.

Theorem (G-2014)

Let λ be any infinite cardinal. Then a semitopological semigroup (I^1_λ, τ) is H-closed in the class of Hausdorff semitopological semigroups if and only if (I^1_λ, τ) is compact.
On a T_1-semitopological semigroup $(\mathcal{I}_\lambda^1, \tau)$

Any above condition is equivalent to the following: $(\mathcal{I}_\lambda^1, \tau)$ is H-closed in the class of Hausdorff semitopological semigroups.
On the semigroup \((\mathcal{I}_\lambda^n, \tau), n > 1\)

Question

Do the above statements hold for a semitopological semigroup \((\mathcal{I}_\lambda^n, \tau)\) for \(n > 1\)?

Definition (Wagner, 1952)

On an inverse semigroup \(S\) we define the *natural partial order* \(\preceq\) on \(S\) in the following way:

\[
x \preceq y \quad \text{if and only if there exists an idempotent } e \in S \text{ such that } x = ey.
\]

Example (G-Reiter, 2010)

Fix an arbitrary positive integer \(n\). The following family

\[
\mathcal{B}_c = \left\{ U_\alpha(\alpha_1, \ldots, \alpha_k) = \uparrow_{\preceq} \alpha \setminus (\uparrow_{\preceq} \alpha_1 \cup \cdots \cup \uparrow_{\preceq} \alpha_k) \preceq : \right. \\
\left. \alpha_i \in \uparrow_{\preceq} \alpha \setminus \{ \alpha \}, \alpha, \alpha_i \in \mathcal{I}_\lambda^n, i = 1, \ldots, k \right\}
\]

determines a base of the topology \(\tau_c\) on \(\mathcal{I}_\lambda^n\). Then \((\mathcal{I}_\lambda^n, \tau_c)\) is Hausdorff compact semitopological semigroup with continuous inversion.
On the semigroup (I^n_λ, τ), $n > 1$

Question

Do the above statements hold for a semitopological semigroup (I^n_λ, τ) for $n > 1$?

Definition (Wagner, 1952)

On an inverse semigroup S we define the *natural partial order* \preceq on S in the following way:

$$x \preceq y \quad \text{if and only if there exists an idempotent } e \in S \text{ such that } x = ey.$$

Example (G-Reiter, 2010)

Fix an arbitrary positive integer n. The following family

$$\mathcal{B}_c = \{ U_\alpha(\alpha_1, \ldots, \alpha_k) = \uparrow\downarrow \alpha \setminus (\uparrow\downarrow \alpha_1 \cup \cdots \cup \uparrow\downarrow \alpha_k) \preceq : \alpha_i \in \uparrow\downarrow \alpha \setminus \{ \alpha \}, \alpha, \alpha_i \in I^n_\lambda, i = 1, \ldots, k \}$$

determines a base of the topology τ_c on I^n_λ. Then (I^n_λ, τ_c) is Hausdorff compact semitopological semigroup with continuous inversion.
On the semigroup \((\mathcal{I}_\lambda^n, \tau), \ n > 1\)

Question

Do the above statements hold for a semitopological semigroup \((\mathcal{I}_\lambda^n, \tau)\) for \(n > 1\)?

Definition (Wagner, 1952)

On an inverse semigroup \(S\) we define the *natural partial order* \(\preceq\) on \(S\) in the following way:

\[x \preceq y \text{ if and only if there exists an idempotent } e \in S \text{ such that } x = ey. \]

Example (G-Reiter, 2010)

Fix an arbitrary positive integer \(n\). The following family

\[\mathcal{B}_c = \{ U_\alpha(\alpha_1, \ldots, \alpha_k) = \uparrow_\preceq \alpha \setminus (\uparrow_\preceq \alpha_1 \cup \cdots \cup \uparrow_\preceq \alpha_k) \preceq : \alpha_i \in \uparrow_\preceq \alpha \setminus \{\alpha\}, \alpha, \alpha_i \in \mathcal{I}_\lambda, i = 1, \ldots, k \} \]

determines a base of the topology \(\tau_c\) on \(\mathcal{I}_\lambda^n\). Then \((\mathcal{I}_\lambda^n, \tau_c)\) is Hausdorff compact semitopological semigroup with continuous inversion.
Theorem

Let n be an arbitrary positive integer, λ be any infinite cardinal and τ be a T_1-shift continuous topology on the semigroup \mathcal{I}^n_λ. Then the following conditions are equivalent:

(i) τ is compact;
(ii) $\tau = \tau_c$;
(iii) τ is countably compact;
(iv) τ is sequentially compact;
(v) τ is ω-pracompact;
(vi) τ is feebly ω-bounded.
On the semigroup \((\mathcal{I}^n_\lambda, \tau),\ n > 1\)

Theorem

Let \(n\) be an arbitrary positive integer and \(\lambda\) be an arbitrary infinite cardinal. Then for every shift-continuous \(T_1\)-topology \(\tau\) on the semigroup \(\mathcal{I}^n_\lambda\) the following conditions are equivalent:

- (i) \(\tau\) is sequentially precompact;
- (ii) \(\tau\) is total countably precompact;
- (iii) \(\tau\) is \(d\)-feebly compact;
- (iv) \((\mathcal{I}^n_\lambda, \tau)\) is \(\mathcal{D}_\omega\)-compact.

Example

For any infinite cardinal \(\lambda\) and any positive integer \(n \geq 2\) there exists a Hausdorff feebly compact topology \(\tau\) on the semigroup \(\mathcal{I}^n_\lambda\) such that \((\mathcal{I}^n_\lambda, \tau)\) is a non-compact non-semiregular semitopological semigroup.

Theorem

Let \(n\) be an arbitrary positive integer and \(\lambda\) be an arbitrary infinite cardinal. Then every shift-continuous semiregular feebly compact \(T_1\)-topology \(\tau\) on \(\mathcal{I}^n_\lambda\) is compact.
On the semigroup \((\mathcal{I}_\lambda^n, \tau), \, n > 1\)

Theorem

Let \(n\) be an arbitrary positive integer and \(\lambda\) be an arbitrary infinite cardinal. Then for every shift-continuous \(T_1\)-topology \(\tau\) on the semigroup \(\mathcal{I}_\lambda^n\) the following conditions are equivalent:

(i) \(\tau\) is sequentially pracompact;

(ii) \(\tau\) is total. countably pracompact;

(iii) \(\tau\) is \(d\)-feebly compact;

(iv) \((\mathcal{I}_\lambda^n, \tau)\) is \(\mathcal{D}_\omega\)-compact.

Example

For any infinite cardinal \(\lambda\) and any positive integer \(n \geq 2\) there exists a Hausdorff feebly compact topology \(\tau\) on the semigroup \(\mathcal{I}_\lambda^n\) such that \((\mathcal{I}_\lambda^n, \tau)\) is a non-compact non-semiregular semitopological semigroup.

Theorem

Let \(n\) be an arbitrary positive integer and \(\lambda\) be an arbitrary infinite cardinal. Then every shift-continuous semiregular feebly compact \(T_1\)-topology \(\tau\) on \(\mathcal{I}_\lambda^n\) is compact.
On the semigroup \((\mathcal{I}_\lambda^n, \tau), \ n > 1\)

Theorem

Let \(n\) be an arbitrary positive integer and \(\lambda\) be an arbitrary infinite cardinal. Then for every shift-continuous \(T_1\)-topology \(\tau\) on the semigroup \(\mathcal{I}_\lambda^n\) the following conditions are equivalent:

(i) \(\tau\) is sequentially pracom pact;

(ii) \(\tau\) is total, countably pracom pact;

(iii) \(\tau\) is \(d\)-feebly compact;

(iv) \((\mathcal{I}_\lambda^n, \tau)\) is \(\mathcal{D}_\omega\)-compact.

Example

For any infinite cardinal \(\lambda\) and any positive integer \(n \geq 2\) there exists a Hausdorff feebly compact topology \(\tau\) on the semigroup \(\mathcal{I}_\lambda^n\) such that \((\mathcal{I}_\lambda^n, \tau)\) is a non-compact non-semiregular semitopological semigroup.

Theorem

Let \(n\) be an arbitrary positive integer and \(\lambda\) be an arbitrary infinite cardinal. Then every shift-continuous semiregular feebly compact \(T_1\)-topology \(\tau\) on \(\mathcal{I}_\lambda^n\) is compact.
On a T_1-semitopological semigroup (X^n, τ), $n > 1$
On a semiregular T_1-semitopological semigroup $(\mathcal{F}^n, \tau), \ n > 1$
Thank You

Thank You for attention!